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Abstract—In this paper, we investigate the prediction of mobile
MIMO channels with varying multipath parameters. Based on
the PAST algorithm, we propose a multidimensional adaptive ES-
PRIT approach for jointly tracking the evolution of the Doppler
frequencies and spatial directions of arrival and departure of the
propagation paths. Future states of the channel are predicted
using the last estimate of the propagation parameters. We show
via simulation that the proposed adaptive method outperforms
existing static approaches with varying channel parameters.
Our results indicate that the performance improvement from
parameter tracking is dependent on the rate of variation of the
underlying multipath parameters.

Index Terms—channel prediction, wireless propagation, pa-
rameter estimation, multipath fading, PAST, ESPRIT, tracking

I. INTRODUCTION

THERE are several instances in wireless communication

where knowledge of the channel state information (CSI)

at both the transmitter and receiver is useful. For example,

transmit precoding techniques requiring accurate knowledge

of the channel state information at the transmitter (CSIT) are

often used to improve the performance of MIMO systems.

In time diviision duplex (TDD) systems, CSIT can be ob-

tained using reciprocity of the uplink and downlink channels.

However, in frequency division duplex (FDD) systems, the

transmitter relies on feebacks from the receiver for CSIT. As

a result of the time–varying nature of the channel in mobile

MIMO systems, the CSI often become outdated before its

actual usage at the transmitter. Channel prediction has the

potential to provide up–to–date CSI, and has been well studied

for both SISO and MIMO systems (see e.g., [1]–[6] and the

references therein).

Recently, schemes for the prediction of narrowband and

wideband MIMO channels based on parametric radio channel

(PRC) modeling were developed in [6]–[8]. These methods

assume that the underlying propagation parameters are sta-

tionary over the region considered. However, as a result of

movements in the scattering medium, these parameters may

exhibit some variations in practice. There is therefore a need

to track the spatial/temporal evolution of the parameters.

Moreover, the computational complexity of the prediction

schemes can be significantly reduced by eliminating the need

for repeated eigenvalue decomposition and matrix inversions

in the proposed method. A potential approach is to utilize

low complexity subspace tracking schemes such as Projection

Alternating Subspace Tracker (PAST) [9], [10] and Bi-iteration

SVD [11]–[13]. Other methods utilize Bayesian schemes for

recursive estimation such as the KF [14], EKF [15] and

PF [16]. While there has been extensive literature on the

prediction and tracking of MIMO channels using Bayesian ap-

proaches, particularly the KF in conjunction with AR models

(see. e.g [17]–[20]), there exist few results on the application

of these methods to the joint tracking of MIMO multipath

parameters.

The focus of this paper is to investigate methods for jointly

tracking the parameters of MIMO channels and channel ex-

trapolation taking account for the temporal/spatial dynamics of

the underlying propagation environment. Based on the PAST

and ESPRIT algorithms, we derive a method for jointly track-

ing the parameters of the channel. The most current estimates

of the parameters are used in the model for evaluating future

values of the channel.

II. MODEL

A. Channel Model

We consider a mobile MIMO channel model defined as

H(t) =

P (t)
∑

p=1

αp(t)ar(µ
r
p(t))a

T
t (µ

t
p(t))e

jωp(t) (1)

where [·]T denotes non-conjugate transpose, αp(t) and ωp(t)
are the time-varying complex amplitude and Doppler shift of

the pth path. µr
p(t) and µt

p(t) are the spatial directions of

arrival and departure, respectively. The vectors ar(µ
r
p(t)) and

at(µ
t
p(t)) are the receive and transmit array steering vectors.

Assuming that the channel is sampled at interval Tsamp ,(1)

becomes

H(k) =

P (k)
∑

p=1

αp(k)ar(µ
r
p(k))a

T
k (µ

t
p(k))e

jkηp(k) (2)

where k is the sample index, ηp(k) = Tsampωp(k) is the

normalized Doppler frequency. Each ray is characterized by

the parameter set {αp(k), µ
r
z, ν

r
p(k), µ

t
p(k), ηp(k)}. Note that
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(2) is valid for all array geometries. We consider a N × M
MIMO system with ULA at both ends. For a N–element ULA,

the array response vector is defined as1

a(µp) =
[

1, ejµp , · · · , ej(N−1)µp

]T

(3)

We assume that K samples of the channel are known from

estimation and denote the estimates as

Ĥ(k) = H(k) +W(k) (4)

where N(k) is the additive complex Gaussian noise.

B. Modeling Temporal Variation of Channel Parameters

Now we will describe methods for modeling the dynamics

of the parameters in (2). As described in [21], [22], the

appearance of new scattering sources can be modeled as

a homogeneous Poisson process with transition rate λbirth

and the lifetime of the scatterers can be described by an

exponential random variable with mean 1/λlife. The number

of active scatterers P (t) at a given time instant is therefore

a Poisson distributed random variable with mean E[P (t)] =
λbirth/λlife]. An illustration of the evolution of number of

scatterers is shown in Fig. 1, where we have used λbirth = 10λ
and λlife = 2λ. The average number of paths is therefore,

E[P (t)] = 5.
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Fig. 1: Evolution of the number of active scatterers.

The dynamics of the structural parameters resulting from

the movement of the mobile station and/or scatterers can be

described using different models depending on the environ-

ment and the rate of motion. In our analysis, we consider two

common models that are often used in time series analysis.

• First-order Autoregressive Model: The dynamics of a

parameter θ can be defined using the AR(1) model:

θ(k) = βθθ(k − 1) + v(k) (5)

where βθ controls the spatial/temporal variation of θ from

a time instant to another and v(k) is a Gaussian random

variable with zero mean and variance σ2
v. The AR(1)

1The definition of the spatial directions µ in terms angles of ar-
rival/departure depends on the array orientation.

model was used in [23] to model time variation of path

delays.

• Linear Advancement Model: An alternative approach to

modeling the time variation allows the parameters to

follow a straight line advancement thus

θp(k) = θp(0) + (k − 1)Tsampβθ (6)

Here, βθ defines the slope of the straight line and is

typically determined by the rate of movements in the

scattering medium. This approach was used in [24] for

modeling delay variation in SISO channels where βθ was

defined in terms of the Doppler frequency as βθ = ωp/ωc.

III. ADAPTIVE MIMO PREDICTION

In this section, we present an adaptive method for pre-

diction of narrowband MIMO channels with varying channel

parameters. Unlike the existing approaches in [6]–[8], we

relax the parameter stationarity assumptions in the adaptive

prediction methods. Based on the PAST subspace tracker [9],

[10], we derive a scheme for jointly tracking the structural

parameters (i.e AOD, AOA and Doppler frequency) of the

channel and predicting the CSI based on the evolution of

the parameters. While it may be necessary to also allow

the complex amplitudes of the propagation paths to be time-

varying, we retain the assumption of constant amplitudes over

a specified region.

A. Adaptive MEMCHAP

This section derives an adaptive Multidimensional ESPRIT

based MIMO CHAnnel Predictor (MEMCHAP). The idea is

to jointly track the parameters and use the parameter evolution

to perform prediction. For simplicity we retain the assumption

of quasi-stationary number of paths and complex weights

and derive an adaptive multidimensional ESPRIT method for

tracking the channel parameters. We also assume that the

number of paths are known. A summary of the steps in the

adaptive MEMCHAP are as follows.

• Adaptive Joint parameter estimation: Given

the K noisy CSI estimates, the parameter

set {µr
p(k), µ

r
p(k), νp(k)}

P
p=1 are estimated for

k = 1, 2, · · · ,K in this step.

• Complex amplitude estimation: Using the estimated chan-

nel parameters at the Kth instant, the complex amplitudes

are estimated via a least square approach.

• CSI prediction: As in the static approach, this stage

involves extrapolation of the CSI based on the parameter

estimates.

We now present a discussion of the adaptive estimation stage.

For clarity, we begin with a semi-adaptive approach which

involve repeated application of multidiemensional ESPRIT at

every time instants.
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1) Semi-Adaptive Joint Parameter Estimation: Let ĥ(k) be

the vectorized form of Ĥ(k). We assume that the parameters

can be assumed constant over every Kc instants and define

d̂(i) =















ĥ((i− 1)Kc + 1)

ĥ((i− 1)Kc + 2)

...

ĥ(iKc)















; i = 1, · · · , I (7)

where i is the new time instant at which parameters are to be

estimated and I = K/Kc. The I data vectors correspond to

vectorized version of I groups of Kc channel samples. The

grouping combines the temporal and spatial channel structure

into one dimension, so that 3D parameter estimation can be

performed. As presented in [7], the central part of the 3D

ESPRIT parameter estimation is the solution of invariance

equations, thus

Φ̂d = (Jd2Ês)
†Jd1Ês (8)

Φ̂r = (Jr2Ês)
†Jr1Ês (9)

Φ̂t = (Jt2Ês)
†Jt1Ês (10)

where (·)† denotes the pseudo-inverse of the associated ma-

trix, Es contains the eigenvectors of the covariance matrix

corresponding to the signal subspace and Jxi; i = 1, 2 are the

rotational invariance selection matrices. The PAST algorithm

presented in [10] can be applied to track the variations

Es(i), thereby eliminating the need for repeated EVD. Let

Vxℓ(i) = JxℓÊs(i); ℓ = 1, 2, the semi-adaptive 3D ESPRIT

can therefore be expressed as

Φ̂x(i) = V †
x1(i)Vx1(i) (11)

Again the MEVD can be applied to (11) to obtain automati-

cally paired estimates. Denoting

Φ̂(i) = Φ̂r(i) + Φ̂t(i) + Φ̂d(i)

= T−1ΛT, (12)

the parameters are obtained as

µ̂
r(i) = arg[diag{TΦ̂r(i)T

−1}]

µ̂
t(i) = arg[diag{TΦ̂t(i)T

−1}]

ν̂(i) = arg[diag{TΦ̂d(i)T
−1}] (13)

The performance of the semi-adaptive joint parameter estima-

tion and tracking is illustrated in Figs. 2, where we plot the

true and estimated parameters. We consider a 2×2 narrowband

MIMO channel with P = 2 paths and a mobile velocity

v = 50 km/h at SNR= 10 dB. We observe that the PAST

based iterative estimation yields reasonable parameter tracking

accuracy for all dimensions.

As in (11), this approach requires explicit computation of

the matrices Φ̂x(i) at every time instant via a matrix inver-

sion. As shown in [25] for one dimensional estimation, the

computation can be eliminated by updating Φ̂x(i) recursively.

A 3D extension of the adaptive ESPRIT method is presented

in the next section.
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Fig. 2: Joint tracking of AOA, AOD and Doppler shifts at

SNR= 10 dB

2) Adaptive Joint Parameter Estimation: Consider the

PAST subspace tracker in [10]. The signal eigenvector Es(i)
is obtained via a rank-1 update, thus

Es(i) = Es(i− 1) + e(i)g(i)H (14)
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Analogously, the update of the matrices in 11 can be expressed

as

Vr1(i) = Vr1(i− 1) + er1(i)g(i)
H

Vr2(i) = Vr2(i− 1) + er2(i)g(i)
H

Vt1(i) = Vt1(i− 1) + et1(i)g(i)
H

Vt2(i) = Vt2(i− 1) + et2(i)g(i)
H

Vd1(i) = Vd1(i− 1) + ed1(i)g(i)
H

Vd2(i) = Vd2(i− 1) + ed2(i)g(i)
H (15)

Our aim is to derive expression for recursively updating Φr,

Φt and Φd. Consider the pseudo-inverse of Vr1(i) defined as

V †
r1(i) = (Vr1(i)

HVr1(i))
−1Vr1(i)

H (16)

Let

Ar1(i) = Vr1(i)
HVr1(i), (17)

and define

Br1(i) = Ar1(i)
−1 (18)

such that (16) becomes

V †
r1(i) = Br1(i)Vr1(i)

H (19)

Substituting the corresponding update equation (15) into (17)

yields

Ar1(i) = Vr1(i− 1) + er1g(i)
H)H(Vr1(i− 1) + er1(i)g(i)

H

= Vr1(i− 1)HVr1(i − 1) + Vr1(i− 1)Her1(i)g(i)
H

+ er1(i)
Hg(i)Vr1(i− 1) + (||er1(i)g(i)||

2)
(20)

Defining

Cr1(i) =
[

Vr1(i − 1)Her1(i) g(i)
]

, (21)

Dr1(i) =

[

0 1

1 ||er1(i)||
2

]

(22)

and using (17), (20) can be written as

Ar1(i) = Ar1(i− 1) +Cr1(i)Dr1(i)Cr1(i)
H (23)

Now substituting (23) into (18) yields

Br1(i) = (Ar1(i− 1) +Cr1(i)Dr1(i)Cr1(i)
H)−1 (24)

Assuming that Ar1(i−1), Cr1(i) and Dr1(i) are non-singular

matrices, the matrix inversion in (24) can be expressed as [25]

Br1(i) = Ar1(i− 1)−1 −Ar1(i− 1)−1Cr1(i)
(

Dr1(i)
−1

+Cr1(i)
HAr1(i− 1)−1Cr1(i)

)−1

×Cr1(i)
HAr1(i− 1)−1

= Br1(i − 1)−Br1(i− 1)Cr1(i)
(

Dr1(i)
−1

+Cr1(i)
HBr1(i − 1)Cr1(i)

)−1

×Cr1(i)
HBr1(i − 1) (25)

Letting

Ξr1(i) = Br1(i− 1)Cr1(i), (26)

and

Σr1(i) =
(

Dr1(i)
−1 +Ξr1(i)Cr1(i)

)−1
, (27)

(25) reduces to

Br1(i) = Br1(i− 1)−Ξr1(i)Σr1(i)Ξr1(i)
H (28)

Substituting (28) into (19) yields

V †
r1(i) =

(

Br1(i − 1)−Ξr1(i)Σr1(i)Ξr1(i)
H
)

×
(

Vr1(i− 1) + er1(i)g(i)
H
)

(29)

After straightforward mathematical simplifications, (29) be-

comes2

V †
r1(i) = V †

r1(i − 1) +Υ(i)Ω(i)H (30)

where

Υ(i) = Ξr1(i)Σr1(i) (31)

and

Ω(i) = [er1(i) 0]− Vr1(i − 1)Ξr1(i) (32)

Substituting (30) and the update equation for Vr2(i) in (15)

into (11) gives

Φ̂r(i) =
(

V †
r1(i− 1) +Υ(i)Ω(i)H

)

(

Vr2(i − 1) + er2(i)g(i)
H
)

= V †
r1(i − 1)Vr2(i− 1) + V †

r1(i − 1)er2(i)g(i)
H

+Υ(i)Ω(i)HVr2(i− 1) +Υ(i)Ω(i)Her2(i)g(i)
H

= Φ̂r(i− 1) + V †
r1(i− 1)er2(i)g(i)

H +Υ(i)Ω(i)HVr2(i)
(33)

Defining

Γ(i) =
[

V †
r1(i− 1)er2(i) Υ(i)

]

, (34)

and

Π(i) = [g(i) Vr2(i)] (35)

(33) can be written as

Φ̂r(i) = Φ̂r(i − 1) + Γ(i)Π(i)H (36)

Expressions for updating Φ̂t(i) and Φ̂d(i) are obtained fol-

lowing a similar procedure. Again, we use (12) and (13) to

extract the channel parameters.

3) CSI Prediction: Having estimated the time-varying

channel parameters over the observation segment, the pre-

dicted CSI at a desired instant can be obtained by first extrap-

olating the parameters and then substituting into the model.

Extrapolation of the channel parameters can be achieved

by using either a linear or polynomial regression methods.

However, there is an inherent problem of parameter association

over time, making it difficult to apply any of the prediction

methods. An alternative approach is to use the most current

parameter estimates for evaluating future values of the CSI,

thus

H̃(k) =

P
∑

p=1

α̂par(µ
r
p(K))aTt (µ

t
p(K))ejkνp(K) (37)

for k = K + 1,K + 2, · · · .

2A similar recursive update expression have been presented in [25] for the
one-dimensional adaptive ESPRIT.
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TABLE I: Simulation Parameters

Parameter value

Carrier Frequency 2.1 GHz
Mobile Velocity 50 kp/h
Tx/Rx Antenna Conf. ULA @ 1/2 λ spacing
Sampling Rate 10/λ
Variation Rate (β) 10

−3

Training Length 100
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Fig. 3: NMSE of adaptive method at different variation rates.

IV. SIMULATION AND RESULTS

In this section, we evaluate the performance of the adaptive

prediction method. We consider a 2 × 2 narrowband channel

with parameters in Table I. Fig. 3 presents the prediction

NMSE as a function of SNR at a prediction horizon of

0.1λ. We observe that, with parameter variation rate of 10−3,

the PAST based adaptive method decreases the performance

NMSE of DOD/DOA-MEMCHAP scheme by approximately

6 dB at all SNR values considered. However, both methods

yield similar NMSE at low SNR for a slower rate of 10−4

with the DOD/DOA-MEMCHAP performing better at high

SNR values. An explanation for this is that, while the adaptive

method is able to overcome the degradation resulting from

parameter variation the static method make better use of the

measurements.

V. CONCLUSION

In this paper, we have investigated methods for jointly

tracking the structural parameters of a narrowband MIMO

channels based on a multidimensional extension of the adap-

tive ESPRIT scheme. The parameter tracking is achieved via

a PAST subspace tracker. Simulation results shows existing

approaches outperform the adaptive proposed method for

stationary multipath parameters, the adaptive scheme offer

improved prediction performance with increasing variation of

the channel parameters. Validating the performance of the

proposed scheme on measured channel will be considered in

our future work.
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